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1 Introduction

In this report we present the work performed in the period May 1990 April
1992 under contract AFOSR-90-0228: Mathematics: Numerical solution of
inverse problems in acoustics, Principal Investigators: Luciano Misici and
Francesco Zirilli.

In section 2 we present the work done in the contract, in section 3,4 and 3
three scientific papers that explain in detail the work discussed in section 2

are reproduced.




2. Statement of the work accomplished

Let R® be the three dimensional euclidean space, D C R® be a bounded
simply connected domain that contains the origin with boundary 8D. Let

u'(z) be an "incoming” plane wave, that is:
ui(z) = (@2 1)

where k > 0 is the wave number, « is a given unit vector and z = (r,y,2) €
R3?. Let u®(z) be the scattered acoustic field and u(z) be the total field that
is:

u(z) = u'(z) + u’(z) (2.2)

Let us consider the following "direct” problems:

Problem 2.1- Find u defined in R*\ D such that

Au+k*u=0 inR*\D (2.3)
w=0 ondD (2.4)
rli_rgmor [’g; - iku’] =0 (2.3)

2 2 2 , s
where A = % + g—y- +-g—z and r = {r° + y? +32)‘/2.

Problem 2.2- Find u defined in R*\ D such that

Au+k’u=0 inR*\D (2.6)
9u =0 ondD (2.7)
ov

umr[&‘—mw]=o (2.8)

r—s | Or

4
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where v is the outward normal vector to dD.

Problem 2.3- Find u defined in R®\ D such that

Au+k’u=0 inR*\D (2.9)
Ou
_— = 9
pru + o ED 0 omndD (2.10)
rlin;or [651:' - iku’] =0 (2.11)

where p; and po are given constants.

Problem 2.1 and in particular the Dirichlet boundary condition (2.4)
corresponds to the study of acoustically soft obstacles, Problem 2.2 and
in particular the Neumann boundary condition (2.7) corresponds to the
study of acoustically hard obstacles, finally Problem 2.3 and in particular
the mixed boundary condition (2.10) correspomds to the study of obstacles

characterized by an acoustic impedance. Moreover we have:

tkr
w(z) = S F(3, k, a) +0(ri2) . o oo (2.12)
r
where £ = = and F(Z,k,a) is the far field pattern associated to u*(z)

flzil
generated by u!(z). Let A\,, n = 1.2,... be the eigenvalues of the Helmholtz

In

equation (2.3) considered in D with the appropriate boundary conditions.
Let B={z e R®| ||z]l <1} and B = {z € R*| ||z|| = 1}, we will consider

the following inverse problems:

Problem 2.4~ Given k > 0. —k? # A\, n = 1,2,... and 2,0, C OB from
the knowledge of the far field patterns F(Z, k,a) of problem 2.1 (Dirichlet
boundary value problem) for « € Q; , z € Q; find the boundary of D, dD.

Problem 2.5- Is analogous to Problem 2.4 when Problem 2.2 that is the

Neumann boundary condition is considered instead of Problem 2.1.

5
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Problem 2.6- Is analogous to Problem 2.4 when Problem 2.3 that is the

mixed boudary condition is considered instead of Problem 2.1.

The inverse Problems 2.4,2.5,2.6 have been considered with special attention

to the resonance region case, that is the case when
kL ~1

where L is a characteristic lenght of the obstacle.
In the research reported here we have considered two types of obstacles:

(1) obstacles with smooth boundary 0D. For this class of obstacles have
developed a numerical method to solve the inverse Problems 2.4,2.5,2.6
(see the references reported in sections 3,4,5 of this report). The
numerical method developed generalizes the method introduced by
Colton and Monk and uses the Herglotz function technique.

(2) obstacles with Lipschitz continuous boundary. For this class of obstacles
we have studied (1] the direct Problems 2.1,2.2,2.3. The existence and
uniqueness of the solution of problems 2.1,2.2,3.3 has been established.
In order to compute the far field patterns generated by these non
smooth boudaries we have generalized the method suggested by Milder
in [2]. However up to now, due to the difficulties encountered in
computing the far field data, we have not been able to work out a
satisfactory method to solve the inverse Problems 2.4,2.5,2.6 when non

smooth boundaries are considered.

References

[1] A. Vecchio, F. Zirilli, in preparation.

(2] D.M. Milder: An improved formalism for wave scattering from rough

surfaces, J. Acoust. Soc. Am., 89, 1991, 529-541. |
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3 APPENDIX 1

L. Misici, F. Zirilli: "An inverse problem for the three dimensional
Helmholtz equation with Neumann or mixed boundary conditions: a
numerical method”, in Mathematical and numerical aspects of wave
propagation phenomena, G. Cohen, L. Halpern, P. Joly Editors, SIAM
Proceedings Series, Philadelphia, (1991), 497-308.
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CHAPTER 30

An Inverse Problem for the Three Dimensional
Helmholtz Equation with Neumann or Mixed

Boundary Conditions: A Numerical Method*

Luciano Misicit
Francesco Zirillig

Abstract. A numerical algorithm for a three dimensional inverse acoustic scattering
problem i3 considerad. From the knowledge of several far field patterns of the Helmholtz
equation a closed surface 3D representing the boundary of an unknown obstacle D is
reconstructed. The obstacle D is supposed to be hard (i.e. Neurnann boundary condition)
or chacacterized by an acoustic impedance (i.e. mixed boundary condition).

1. Introduction

Let R® be the three dimensional euclidean space, £ = (z,y,z) € R> be a geaeric vector,
(.,.) will denote the euclidean scalar product and ||.|| the euclidean norm. Let D ¢ R?
be a bounded simply connected domain with smooth boundary 3D that contains the
origin. Let u'(z) be an incoming acoustic plane wave, that is:

u'(z) = (22 (1.1)

where k > 0 is the wave number and g € R7 is a fixed unit vector. Let us denote with
u’(z) the acoustic Seld scattered by the obstacle D and with u(z) the total acoustic field,
that is:

u(z) = u'(z) + u’(z) (1.2)

The total acoustic field u(z) 3atisfies the Helmhoitz equation:
2u+klu=0 in RN\D (1.3)

and the scattered acoustic field u’{z) satisfies the Sommerfeld radiation conditioa at
infinity, that is:
fim (22 k') = 0 1.4
Jim (2 ikwt) = (1.4

. ) .
The research reported in this paper iss been made possibie through the suppart and sponsorship
of the Uaited States Government through the Air Force Office of Scientific Research under contract ao

AFOSR 90-0228 with the Universith di Camerino

~

1Dlp-rﬂmeuto dl Matematica ¢ Fisica Universith dl Camerino -62032 Camerino (MC)- Italy
iDlpulimeMo di Matemalica "C. Castelnuovo® Universith di Roma "La Sapicnza” -00185 Roma-
Italy .
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where & = 3";’1*‘%‘?":—:!' is the laplacian and r = {|z]| = (z® +y? +£°)/2. Moreover the
total acoustic field u(z) satisiies a boundary condition an dD. This boundary condition
can be formulated in several different ways, depending oa the nature of the obstacle D.
In (1],{2] we bave considered the acoustically soft obstacles (23] that are characterized by
the Dirichlet boundary coadition:

u=0 on dD (1.5)

In this paper we restrict our attention to the acoustically hard obstacles [3] characterized
by the Neumann boundary condition

-
gu

3v

=0 on 4D (1.6)

where v 15 the unit normal oa dD, and to the obstacles characterized by an acoustic
impedance x (3] that satisfy the mixed boundary condition

3
u+x5%=o on 3D (1.7)

We assume that x is a given constant. We consider two boundary value problems: the
Meumann boundary value problem given by (1.3),(1.4),{1.6) and the mixed boundary
value problem given by (1.3),(1.4),(1.7). In [4] it is shown that the scattered Seld u*(z)
of the Neumanno aod mixed boundary value problem has the {ollowing expansion

ikr

1
w'(z) = == Fo(%,k,a) + O(5) whenr — oo (1.8)
r r
where £ = ”; , 27 0and F,(Z, k,q) is the far field pattern generated by the incoming

wave (1.1} that hits the obstacle D.

In this paper we introduce a numerical method for an inverse problem for the three
dimensional Helmholtz equation, that is from the knowledge of the nature of the obstacle
i.e. the boundary condition on 3 D satisfied by u(z) and {rom the far Geids F, generated
by several incoming waves we want to recover the shape of the obstacle 3D.

The inverse acoustic scattering problem have received a lot of attention in the scientific
aad technical literature, here we wiil refer only to the work of Colton and Mook [5},6],(7]
since the work presented in this paper has beeen inspired by [7]. To be more precise
let A, , n=1,2,... be the eigeavaiues of the Helmhoitz equation in the interior of D,
with Neumana boundary conditicn {1.5) or with the mixed boundary condition (1.7); let
B=(zeR*| [lzll <1}, and 3.3 te the boundary of B. We will consider the following
inverse problem:

Problem 1.1 Let us assume that u/z) satisfics the Neumann boundary condition (1.6) or
the mixed boundary condition [1.7}. Let 1, €38 , 2 € {£ € R | € > 0} be two given
sets such that A; € 13 v =1,2... Trom the kpowledge of F,(z,k,a),forae;, , kel
determine the boundary of the cbstacle 3D.

We pote that the condition A; £ (13 ¢ = 1,2... is a non-resonance condition, that {2, is
the set of the directions of the incoming waves and that the far field F, is observed (or
Z€48B.

In this paper we present a numerical method to solve Problem 1.1, in particular in section
2 we derive the mathematical relations needed to develop cur method, in section 3 we
present our numerical method, finally in section 4 some numerical experience is shown.
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2. The mathematical formulation of the laverse problem

For z,y € R® let

®(kllz - yll) = (2.1)

be the Green’s {unction of the Helmholtz operator with the Sommerfeld radiatioa condi-
tion at infinity. It is easy to see that:
ekilzil

o rk(Ey) Lo(
=il

) whea jz] — oo (2.2)

®(kflz - yll) = H:lsl’

moreaver {rom the Helmholtz formula (8] we have:

a 5% 3uly) . [-w(z) ¥zeD
Jotisig - ompeen = {205 {EER e

where do(y) is the surface measure on 3 D.
Substituting (2.2) in (2.3) and using (1.8) we have:

1 gemHay)

k,a) = —

y
F,{z uly Py =
' 4r ao( (v dv(y) du(y

) -
L7 go(y) (2.4)
Let g(2) € L?(3B, do) where L2(3 8,do) is the space of square integrable functions with

respect to the measure do and ¢(zZ) is the complex conjugate of g(z).
For every g(Z) € L*(d B,do) from (2.4) interchanging the integrals we have:

2 Nl ol dem( 2 _1 ] Ty . ae-‘k(é'y) (2) —ik(2,y)
[, Fe k2= [ et [ P - e ey
1 au(ky) au( )
=5 |, MO TE -~ sy D
(2.5)
where
vlky) = £)e*(Ey) z .
(ky) / GRS (2.6)

It is easy to see that v(ky) satisfies the Helmholtz equation for y € R®, moreover v(ky)
is the Herglotz wave function corresponding to the Herglotz kernel 9(z ) Since the total
acoustic field u satisfies the boundary condition (1.6) or (1.7) on the surface 3D formula
(2.5) reduces to:

- - __l_ duiky) .
) [, erai@aen = o [ wpFley e

when the Neumann boundary condition (1.6} is satisfied, or to

_ du
6 [, ek el = 1 [ bt e

Itas

when the mixed boundary condition (1.7) is satisfied.
We restrict our attention to the Neumann Herglotz domains, that is domains such that

*'"  unique solutiog v of:
(A+kYv=0 z€D (2.9)
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v 3 ekt
dv av(z) Kzl

is given by (2.6) for a suitable choice gy (Z, k) of g(Z), or to the mixed Herglotz domains,
that is domains such that the unique solution v of

z<€dD (2.10)

(6+kv=0 zeD (2.11)
3 3 PEALIE]
(x57+v= (Xa—y(-g'*'l)(-—km) z€dD (2.12)

is given by (2.6) for a suitable choice gx (2, %) of g(2).
We note that in the definition of Herglotz domains we have exploited the hypotesis
k3 £ X +=1,2,---, A simple computation shows that the sphere is an Herglotz
domain that is the class of the Herglotz domains is not empty. In (2.7),{2.8) let v be the
Herglotz wave function associated to gy (Z, k), using (2.10),(2.12) respectively and the
Helmholtz formula (2.3) we have '

(2.13)

ol o

/ Fol2,k,2)77 (5, F)do(2) =
aB

whea g (Z, k) is the Herglotz kernel, formula (2.13) holds Yk, a. Problem 1.1 proposed
in section ! will be solved in three steps:
(i) from tk.:knowledge of some far fields £, using (2.13) determine the Herglotz kernel
gu (Z, k) of the domain D
(i) from gy (2, k) using (2.6) find the corresponding Herglotz wave function v
(i) determine 8D using (2.10) (Neumnann boundary condition) or (2.12) (mixed boun-
dary condition).

3. The numerical method

Given D c R? and the boundary conditions (1.6) or (1.7) satisfied by u on 3D, let

= {a, € 3B |+ =1,2,---, N} be the set of directions of the incoming waves aod
13 ={(k >0{7=1,2,++-, M) be the set of wave gumbers of the incoming waves. The
data of our problem are the measurements of the far fields Fo(3,k;,a;,) 2€398 ; ;=
1,2,-+-,M;1=1,2,---,N. In the numerical experience shown in sectiocn 4 the data are
obtained by solving numerically the "direct” problems (1.3),(1.4),(1.6) or (1.3),(1.4),(1.7).
Let (8,4) be the polar angles so that

£(9,9) = (sinfcos d,3in § sin ¢, cos §) (3.1)

and
Utm{zZ) = 1im P (cos8)cosme , Vim(Z) = 7im " (cos ) sinmg

be the spherical harmonics that is P are the Legendre polinomials, ™ is the mth

derivative of P, and 7, are the normalization factors in L?(dB,do). “xom these data
our computation proceeds in four steps:

Step 1. For each j compute the Fourier coefficients of Fo(Z, 4;,a;) , ¢ = 1,2,---, M.
Given Lmas 2 0 we assume that the far field F,(Z, k;,a;) can be approximated by a
truncated Fourier series, that is:

Luwas Lomar

F z,k,,g, Z Z ,mlUlm(§)+ Z Z F;m;‘/(m _i. (32)

i=0 m=0 =] m=1

11
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The Fourier coefficients {71 ,, F;!,} are determined computing the foilowing integrals:

Fl"rf\l = / Fa(i' k,,g.)b’,m(é)w(i) ] 1 = 01 Il'anaz y m= 01 1.--|[ (33)
a8
Fil,= Folz ki @) Vim(2)do(2) |, 1=1,2,.,Lmas s m=1,2,.,1 (3.4)

Step 2. From the coefficients of F,(2,k;,a,) ; ¢ = 1,2,..., N to the Herglotz kernels
gu(2, k), 7=1,2,..., M of the domain D.

Let g (2, k;) € L?(d B, do) be the Herglotz kernel acsociated to the domain D when we
use the wave number k; € {13. We assume for gy (Z, k) the expression of a truncated
Fourier expansion, that is

L, 1 L, 1
H(Z, k)= Z z i1 Utm(2) + Z Z lmzvlm(z) (3.5)

=0 m=0

where 0 € L, € Lmaz. From (2.13) using the orthogonality properties of the spherical
harmonics we have:

L,

4
1 . .
S S RS S R =k . =LV e LM (9
{=0 m=0 (=] m=] ’

So that for each ;j the Fourier coefficients {g{ml,g{m,} are determined solving (3.6). For
7 fixed the linear system (3.6) has L&'—M + Q,_Ll_-_._t_}. unknowns, that is in order to

determine {g7..,,9{,.1) we need N incoming waves thh N> ﬂ‘f—ﬂw Lallotl]
If the obstacle D has some symmetry such as cylindrical symmetry around the z-axis
and/or symmetry with respect to the equator then a similar symmetry can be assumed
on ¢y (Z,k,). This assumption reduces substantially the number of unknowns in (3.6)
and as a consequence the number N of incoming waves needed to recover the desired
approximation of gy (Z,k;) [2].

Step 3. From the Herglotz kernels gy (Z, k,) to the Herglotz wave functions v, (k;y).
From (2.6) and (3.5) we have:

v (k {Z Y Gt Sk, ) Uim (9) +Z Zg,,,,n Jilky nyu)m(y)} (3.7)

=0 m=0 =1 m=1

where y = and Ji(-) is the spherical Bessel function of order I.

vi
Step 4. From the Herglotz wave {unctions vi(k,y) ; J=1,2,.... M to the boundary of
the obstacle dD.

Let (r,8,4) be the polar variables we assume that exist 0 < a < b < oo and a function
[(8,4) witha € f < bsuchthat 3D ={r = f(8,4) |0< 8 <x,0< ¢ <2r}) We
approximate f{#,#) with a truncated Fourier series, that is:

L, 1
= Z Z ¢tmiUim _2.! + Z Z Clmlvlm _‘i (38)

{=0 m=0 (=l m=1

where L, 2 0 is chosen depending on 3D i.e. simple obstacles can be reconstructed with
L, = 4,6. Moreover if d0 has some symmetries these can be trnslated in properties

12
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of the coefficients {Clml.Clmi} Let ¢ = {C(,,-.x,C(mz) 0<!< L‘, , 0 < m <] be an
MM + —‘-&-‘*—u dxmensnonal vector. The unkoown boundary 9D is obtained
rrummmng with respect to ¢

M 1 2 rl 3 e'”‘:f 2 )
I (e) ::;;;/; dé/o |$(”1’+ -k—’f——) sin 948 (2.9)

when the Neumann boundary condition (1.6) is considered, or

(o) Z /"déf'l(x— 1) +

when the mixed boundary condition (1.7) is considered.

In (3.9),(3.10) the Herglotz wave function v, are computed in (r = f(9, ¢),4, $) and v is

‘the unit exterior normal to the surface r = f(8,¢) and f is given by (3.8). The integrals
n (3.9),(3.10) are approximated with some elementary quadrature formula. The weights

kl are introduced in order to make the different terms in the sums over j of the same

order of magnitude. When the minimization of the {unctions I,{¢) , ¥+ = 1,2 does not

give a satisfactory reconstruction of 8 D we minimize

2
sin §d0 (3.10)

—-h Iy

———)

Pilc)=lLi(e)+w() ; v=1,2 (3.11)

where w(c) is a penalization term.
For a large class of surfaces § D including the ones with cylindrical symmetry with respect
to the z-axis we have %{; = %£ =0atd =0 (North pole)and § = x (South pole), moreover

if 3D is also symmetric with respect to the equator we have 3{- = =0at§ =% (the
Equator}.
When %—‘g = 'a'ﬁ = 0 the relations

a ( —ik,f

—(v; + =0 3.12

av ] k,[ ) ( ‘)
and .

a e~k o

become nonlinear equations in the unknown [ that can be solved, {or axample, using
the bisection method. In this way we can obtain [y, [f;, /s estimates of [{f,$) whea
§=148,,0;,8, with 8, =0,8; = v, 43 = . The penalization term w(g) is given by:

3
wle) = 3 p(f(8:,8) = ) (3.14)

where f(§,4) is given by (3.8) and p; 2 0 , + = 1,2,3 are weight factors. The mini-
mization of the functions [i(z) or P(¢) , { = 1,2 is performed with a stochastic global
minimization algorithm introduced in {9},(10].

4. The numerical experience

In our numerical experience we chosen in (1.7) the acoustic impedance y = 1. The
surfaces 3D considered are the {ollowing ones:

13
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1. Oblate Ellipsoid (E2)+(3y)?+22 =1 (4.1)
2-  Prolate Ellipsoid b N (3z)2 =1 (4.2)
3-  Short Cylinder ((3z)? + (3y)?)6 + 2% =1 (4.3)
4 Long Cylinder (:3 +¢P + (20 =1 (4.4)
5.  Vogel’s Peanut r= 3(cos?§ + Lsin?9)!/2 (4.5)
8- Pseudo Apollo r=3(4 +2cos34)/? (4.6)

All these surfaces are cylindrically symmetric with respect to the z-axis and the surfaces
1,2,3,4,5 are also symmetric with respect to the equator. These symumetries are aiways
exploited to reduce the number of Fourier coefficients in the expansions of the Herglotz
kernels and of the surfaces f(4,¢).

We observe that the obstacles D corresponding to 1,2,3,4 are convex and the ones corre-
sponding to 5,6 are not convex. Finally a characteristic length L of the obstacles can be
chosen equal 1. The set of the directions of the incoming waves is:

0y = {(67,0) | & = % 7 =0,1,.., N} (4.7)

with
N=Lpna:+1 (4.8)

The set 3 is 3 subset of the set {2,3} and L, = Lnas. We observe that with this choice
of 013 the product k, L is of order one, that is we are working in the resonance region.
For j = 0,1,:-:,36 let 4, = % , f(8;,0) be the exact value of the surface given by
(4.1),...,(4.6) and f.(8;,0) be the value reconstructed performing the numerical procedure
described in section 3. The relative L? error in the points {4, | ; = 0,1,...,36}, that is

(4.9)

1/2
EL’ - Zjio(/t(s}oo) - 16(8)'10)):
a0 12(8;,0)
is used as a performance index.

The results obtained are shown in Table 4.1, Table 4.2, Fig. 4.1a, 4.1b, 4.1¢c, Fig. 4.2a,
4.2b, 4.2¢ and Fig. 4.3a, 4.3, 4.3¢.

Table 4.1 Heumann problea

| Penalization term
Object :Reconstructicni[,.,\u[,‘lk‘ ko[North PoldEquatod Ep»
Oblate Ellipsoid 1 [ 8 [4]2n yes yes [.0041%
* 2 3 1412]3 no no [0.0041%
[Prolate Ellipsoid] 3 3 !4|2ind yes yes [0.0046
" 4 C 3 144213 no no [0.00371
Short Cylinder 5 8 16]2ndg yes yes |0.0476
? 6 1 3 151213 no so |0.0361
Long Cylinder 7 i 83 16{2h yes yes |0.0551
» 3 | 8 16/1213] no 2o |0.0785
Vogel's Peanut 9 8 |4[2nd  yes yes [0.0299
" 10 8 |412]3 no no [0.0225
Paeudo Apolle 11 8 |4|2hd yes yes |failure
i 12 8 |4]2|3 no no |failure
" 13 8 [4]2]3 yes no |[0.0353
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Table 4.2 Problem with mixed boundary condition

Fig. 4.1a Original
Long Cylinder

Fig. 4.2a Original
Vogel's Peanut

Penalization term
Object IReconstruction|LmasiLotkiksfNorth PoldEquatod Eps

Oblate Ellipaocid 1 8 j4|2lnd  yes yes |0.0102
" 2 8 [4]2]3 no no [0.00484
[Prolate Ellipsoid 3 8 |4|2hd yes yes 10.0139
" 4 8 14123 no no [0.0232

Short Cylinder 5 8 |6]|2hng yes yes {0.0399
" 8 8 |6(2}3 no no |0.0568

Long Cylinder 7 8 |16|2pnd yes yes |{0.0424
" 8 8 |612]3 no no |0.0293
Vogel's Peanut 9 8 |4{2hd yes yes |0.0448
" 10 8 |4]2]3 no no [0.0495
Pseudo Apollo 11 8 |4i2pnd yes yes |failure
" 12 8 {4(2{3 no no |[failure

” 13 8 [4)2]3 yes no }0.0356

Fig. 4.1b Reconstruction
n° 8 of table 4.1

Fig. 4.2b Reconstruction
n® 10 of table 4.1

15

Fig 4.1c Reconstruction
n? 8 of table 4.2

Fig 4.2¢ Reconstruction
n° 10 of table 4.2
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Fig. 4.3a Original Fig. 4.3b Reconstruction Fig 4.3¢c Reconstruction
Pseudo Apollo n® 13 of table 4.1 n® 13 of table 4.2

The reconstruction procedure adopted here based on the minimization of the functions
li ot Pi , 7 = 1,2 is more robust than the reconstruction procedure adopted in [1],[2]
that integrates numerically an initial value problem for an ordinary differential equation.
However the global minimization of the functions /; or P; , i = 1,2 using a stochastic
algorithm is computationally much more expansive than the solution of an initial value
problem. The reconstruction technique suggested in this paper can be adapted to the
problem with Dirichlet boundary condition with very satisfactory results.
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1- Introduction

Let R3 be the three dimensional euclidean space, z = (z,v, z)T € R? be a generic vector and the
superscript T denotes the transpose operation. The euclidean scalar product will be denoted with
(*,+) and || - || will denote the euclidean norm.

Let D C R3 be a bounded simply connected domain with smooth boundary 8D, in the following,
without loss of generality, we assume that D contains the origin. Let u’(z) be an incoming acoustic
plane wave, that is:

u'(z) = etfz2) (1.1)

where & > 0 is the wave number and a € R? is a fixed unit vector (i.e. ||a]| = 1). Let us denote
with u*(z) the acoustic field scattered by the obstacle D and with u(z) the total acoustic field,
that is:

u(z) = v'(z) + v’(z) (1.2)

The total acoustic field u(z) satisfies the Helmholtz equation:
Lu(z)+ Ku(z)=0 zeR*\D (1.3)

where A = 8%/9z* + 0?/0y* + 0?/0z° is the Laplace operator. The scattered field u*(z) satisfies

the Sommerfeld radiation condition at infinity

lim r{aau
r—oo T

—iku'} =0 (1.4)

where 7 = ||z||. Moreover the total acoustic fleld u(z) satisfies a boundary condition on 8D. This
boundary condition is the mathematical counterpart of the physical character of the obstacle, that

is: for acoustically soft obstacles we require the Dirichlet boundary condition:
u(z)=0 z€0D (1.5)
for acoustically hard obstacles we require the Neumann boundary condition:

du(z) _
5 =0 zE€ aD (1.6)

where n(z), z € 3D is the unit outward normal to 8D at the point z, and finally for obstacles

characterized by an acoustic impedance we require the mixed boundary condition:

u(g)+x2% =0 z€34D (1.7)
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We assume x to be a real constant to derive the relations of section 3, however this assumption
can be avoided.

We call direct problem the problem of determining the scattered field u*(z), z € R3\ D given
the incoming field u’(z) the obstacle D and its physical character, that is given one of the three
boundary conditions (1.5),(1.6),(1.7). The direct problem is a boundary value problem for the
Helmholtz equation, and has been widely studied. For an exposition of several mathematical results
on the direct problem see for example [1]. In particular it can be shown [1] that the scattered field
u’(z) corresponding to the boundary condition (1.5), (1.6) or (1.7) has the following expansion:

eikr . 1
Fo(Z,k,2) + O(;z-) T — 00 (1.8)

r

u'(z) =

so that when r — oo the leading term of the expansion in inverse powers of r is given by a
spherical wave ¢**"/r coming out from the origin modulated by the "far field” Fy. We note that F
depends on k,a that are the parameters characterizing the incoming wave (1.1) and on £ = 'ﬂiﬂ’
for £ # 0. We note that the Helmholtz equation (1.3) is obtained from the wave equation assuming
that the incoming field and the corresponding scattered field are time harmonic, that is their time
dependence is given by a factor e*“* where w is a constant.

The inverse problem that we consider here is the following: given the character of the obstacle (i.e.
acoustically soft, hard, or characterized by an acoustic impedance) and the far field Fy(Z, &, a) for
one or several incoming waves u'(z) with different incident directions @ and/or wave number &
determine the boundary of the obstacle dD. This inverse problem is known to be ill posed and due
to its great interest both in mathematics and in several application fields has been widely studied,
for a review see [2].

The numerical methods used to solve the inverse problem considered hLere can be divided in two
types: the first type consists of an iterative procedure that at each step requires the numerical
solution of a direct problem, the second type consists of genuine methods for the inverse problem
that do not require the solution of the direct problem. In the first type we mention the work of
Roger (3], Murch, Tan and Wall [4], Wang and Chen [5], Angell, Colton and Kirsch [6], Kristensson
and Vogel (7]. In the second type we mention the work of Kirsch and Kress [8], {9], {10] and the
work of Colton and Monk [11].

In this paper we introduce a numerical method to solve this inverse problem based on the Herglotz
wave function method introduced by Colton and Monk in [11] and further developed by the authors

in (12], (13], (14), [15]). In particular, based on previous work by the authors [14], we extend the
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Herglotz function method introduced in [11] for acoustically soft obstacles to hard obstacles or
obstacles characterized by an acoustic impedance. The analytical relations obtained are exploited
to built up numerical algorithms. Finally these algorithms are efficient in the so called resonance
region, that is when

kL = O(1) (1.9)

where L is a characteristic length of the obstacle D. In section 2 we derive the analytical relations
that are the basis of the numerical methods. In section 3 the basic numerical method developed
for the solution of the inverse problem is presented. In section 4 some special features of the
reconstruction procedure in the case of acoustically soft obstacles are shown. Finally in section
5 we introduce the test problems used to test.the methods of sections 3 and 4 and we show the

numerical results obtained.
2- The mathematical formulation of the inverse problem

Forz,y€ R3 let
etkllz—yi

M S S

(2.1)

be the Green’s function of the Helmholtz operator that satisfies the Sommerfeld radiation condition

at infinity. It is easy to see that:

eikllr!I Ly
o(z e &Y 4 O when z — o0 2.2
9= P (22
moreover from the Helmholtz formula [14] we have:
9%(z,y) du(y) _ [ -ui(z) ifz€D
/Z,D [“(Q)W -z vgy )] oy = { w(z) ifz€R\D (2:3)
where do(y) is the surface measure on dD. Substituting (2.2) in (2.3) and using (1.8) we have:
1 3(E—ik(2’g)) au(y) emik(2.y)
Fo(g,k, ) = o / [u(g) nly) 8n(y) do(y) (2.4)

Let B = {z € R® | ||z|| < 1}, OB be the boundary of B and d be the surface measure on 9B,
we denote with L2(dB,d)) the space of square integrable complex functions with respect to the

measure dA. For g(£) € L?(8B,d)) and (2.4) interchanging the integrals we have:

. T . ___1_ —_— . a(e_ik(i'g)) a“(y) o tk(ZY) _
/38 Fo(Z,k,a)g(2)dA(2) = /68 £)dA(2) /aD [u(.f_/) ony) oy ¥l do(y) =

(2.5)




where
o) = [ o)D) (2.6)

It is easy to see differentiating under the integral sign that v(y) is a solution of the Helmholtz
equation for every y € R3.

Let I, 2, B3 be the sets of the eigenvalues of the Laplace operator inside the domain D with the
Dirichlet boundary condition (1.5), the Neumann boundary condition (1.6) or the mixed boundary

condition (1.7) respectively. We give the following definitions:

Definition 2.1 Given —4% ¢ T, let wi(y) be the unique solution of the following boundary value

problem:
(A + kz)wl(g) =0 yeD (2.7)
= iklyl )
wi(y) = BTN D (2.8)

We say that D is an Herglotz domain with respect to the Dirichlet boundary condition if there

exists g1(£) € L?(8B,d)) such that

w(@) = [ (@0 (2.9)
8B
In a similar way we define:

Definition 2.2 Given —k* ¢ £,, let wa( y) be the unique solution of the following boundary value

problem:
(A+kE)wy(y)=0 yeD (2.10)
dua(y) o eyl
on(y) _ on(y) ( Flo ) y& oD (211)

We say that D is an Herglotz domain with respect to the Neumann boundary condition if there

exists go(£) € L%(9B,d\) such that

wa(y) = /BB 92(2)e M EVdN(E) (2.12)

Detinition 2.3 Given x € R and —k* ¢ Tj, let w3(y) be the unique solution of the following

boundary value problem:

(A + K )wy(y)=0 yeD (2.13)
dws(y) _ 9 e—tkllyll
wi(y) + X dnly) -(1 +xan(2)) ( Ful ) y€eaD (2.14)
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We say that D is an Herglotz domain with respect to the mixed boundary condition if there exists

g3(£) € L*(7 3,dA) such that

waly) = /a _n(DE D) (2.15)

To our knowledge it is not known a characterization of the Herglotz domains, however it is easy to
see that the class of Herglotz domains is not empty. In fact a straightforward computation shows
that the sphere of center the origin is an Herglotz domain in the sense of Definition 2.1, 2.2, 2.3,
moreover the numerical experience of section 5 can be regarded as experimental evidence that the
domains considered satisfy the previous definitions.

Since now on we consider only domains D that satisfy the appropriate Herglotz condition that is
Definition 2.1 or 2.2 or 2.3. In the case of the inverse problem for the acoustically soft obstacle

from (2.5) using (1.5) and (2.8) we have:

[ Blakem@a@=; Vaeos (2.16)
2B
Reasoning in the same way we have:
Folé, b, 0)a(B)dA(E) = = Va€dB (217}
3B k
for the acoustically hard obstacle and
/ Frii k)@@ =7 va€dB 2.18)
28

for the obstacle characterized by an acoustic impedance.

The numerical method for the inverse problem for the acoustically soft obstacle is based on the
relations (2.16), (2.9), (2.8) that connect the data that is the far fields to the unknown 4D. In a
similar way we will exploit (2.17), (2.12), (2.11) to solve the inverse problem for the acoustically
hard obstacle and (2.18), (2.15), (2.14) to solve the inverse problem for the obstacle characterized

by an acoustic immpedance.
3- The numerical method

Given D C R3 and the boundary condition (1.53) or’{1.6) or (1.7) satisfied by u on D we will exploit
numerically the analytic relations derived in section 2 as follows. Since most of the content of this

section is independent of the boundary conditions chosen, in order to fix the ideas, we consider
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the inverse problem for acoustically solt obstacles that is the relations {2.16), (2.9), (2.8), when
necessary we will comment on the peculiar features of the corresponding problems for acoustically
hard obstacles or obstacles characterized by an acoustic impedance. (‘ur general strategy car be
summarized in three points:
(i) use (2.16) to go from the knowledge of the fa. " !ds Fy to the Herglotz kernel g;(Z) of the
domain D
(ii) use (2.9) to go from the knowledge of the fHerglotz kernel 7,(Z) to the Herglotz wave function
wl(!_/)
(iii) use (2.8) to go from the knowledge of the Herglotz wave function w;(y) to the boundary of
the obstacle 0D
More precisely given D, let Q; = {a; € 0B |i=1,2,---, N} be the set of directions of the incoming
waves, Qo = {k; e R | =k ¢, ,i=1,2,---, N} be the set of the non-resonant wave numbers
of the incoming waves and Q3 = {Z; € 0B |i=1,2,---, M} be the set of directions where the far
fields Fy are measured. For i = 1,2,3 we assume that the elements of §; are distinct. The data of
our inverse problems will be the numbers F;;, ;, 1=1,2,---,N, iy =1,2,---,Ny, j=1,2,---, M
that represent the measurements of Fo(Z;,k:,,;). In the numerical experience shown in section 5
these data are obtained solving numerically the direct problem (1.3), (1.4), (1.3).
Let (8, ¢) be the polar angles so that

L = 2(8,0) = (sinfcos ¢, sinfsing, cos 9)T (3.1)

and Um(Z) = 7im P (cosf) cos mo. Vip(Z) = 7,,,,2[“(cost9) sinmg,1=0,1,2,---, m=0,1,---,!
be the spherical harmonics, where ~.., are'the normalization factors in L*(B,d)) and P are the
Legendre functions. It is well known that {U,m,Vzm}ml: e is 2n orthonormal complete set of
L3(9B,d\).

From the data our computation proceeds as follows:

Step 1. From the data to the coefficients of the expansion in spherical harmonics of the far field
FO(ivkinQi)yil=112y"'74vly i:l,?,---,;V.
Let us first consider the case Q3 = {£;| i =1,2,---, M}. Given aninteger L,; > 0 we assume that

the far field Fo(Z, ky,, ;) can be approximated by a truncated expansion in spherical harmonics,

that is: L L
Fo(z, ki) = ) Z Ryt Um(2)+ Y Z o't 2 Vim(2) (3.2)
=0 m=0 i=1 m=1
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we note that the unknown coefficients appearing in the truncated expansion (3.2) are (Lmqar + 1)?

complex constants. To determine these coefficients we impose that

MOS l L"Idl l
Z ZF(;llmlUlm(_I_J + Z ZFo(mwllm(I)— 1,61, j=1,2,"',.¥[ (33)
=0 m=0 =1 m=1

The equations (3.3) are a linear system of M equations in (Lmaz + 1)? unknowns, so that in order
to determine the unknowns we need M > (Lmaz + 1)%. The condition number of the linear system
(3.3) grows dramatically with the number of equations M, so that its numerical solution become
practically unfeasible even for small values of L4z such as Ly = 4,6,8.

The use of regularization procedures such as Tichonov regularization to solve (3.3) are helpful but
insufficient to cure the ill conditioning. We note that the right hand side of (3.3) is supposed to
represent actual physical measurements that are affected by significant experimental errors so that
ill conditioning is a true challenge. This ill conditioning problem is solved reducing the number of
unknowns to be determined and reducing in a similar way the number of equations to be solved.

This is obtained exploiting the special features of the linear system (3.3).

Step 2. From the far fields Fy(Z, ki, ;) 1 =1,2,---, N1 ¢ =1,2,---, N to the Herglotz kernel
gi,(2)

Let g, (2) € L*(dB,d)) be the Herglotz kernel associated to the boundary condition (1.5), the
domain D and the wave number k;, € Q,. We assume that g;,(£) can be appoximated by a

truncated expansion in spherical harmonics, that is:

] Ly, 1
!]n z) Z g,ml Ulm(I Z Z Imnvlm(r) (34)
=) m=0 {=1 m=1
where 0 < L; < Lmgz is an integer. Using the orthogonality pr- -~ .»s of the spherical harmonics

the relation (2.16) will be approximated with:

{

ZZFO',:M}ZH

:
1 . -
Z 01m~91m’=k—- CE=E L2V (3:3)

=0 m=0 m=1

13

i [\/ly

The equations (3.5) are a linear system of ¥V equations in the (L, + 1)? unknown coefficients
{9/}, 91k, 1}, so that in order to determine the unknowrs we need V > (L, + 1)*. We remark that
the unknown coefficients {g;} ,,9;%,} are complex numbers. The number of incoming waves N can
be drastically reduced if the unknown coefficients to be determined are reduced in a corresponding

manner. This reduction can be achieved if we make some a priori assumptions about the symmetries
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of the obstacle D, and we assume than the same symmetry is conserved in the Herglotz kernel g;,(2).
In this paper we consider only two choices:

(i) 8D is cylindrically symmetric with respect the z-axis, that is D = {z = f(8)2(6,8) | 0 <
8§ <7, 0< ¢ <2} for some function f. In this case if we assume the same symmetry for
gi,(£) we have g,",‘n1 =0ifm >0 and gl"}nz = 0 for every I/, m so that the linear system (3.3)
has only L, + 1 unknowns and as a consequence we need only ¥ > L, + 1 incoming waves

(ii) 9D is cilindrically symmetric with respect to the z-axis and symmetric with respect to the
equator. Arguing as in (i) we can conclude that the linear system (3.5) has only [%1] +1
unknowns. With [%1] we have denoted the integer part of %—1

When it is necessary the system (3.3) is solved using a regularization procedure. We note that
when it is assumed some symmetry about §D and these symmetries are exploited as previously
shown a large number of the coefficients {F;","';n‘l, F;j,"in_g} of the system (3.5) determined in Step

1 are multiplied by unknowns {g;! ,,gi1,} that are assumed zero.

Step 3. From the Herglotz kernel g; (Z) to the Herglotz wave function wy ;,(y), 1 = 1,2,---, N,
From (2.9) and (3.4) an explicit computation gives us an approximated expression of wy ;, (y), that

is:

L, 1 Ly 1
win (1) =47 S ST gl ik Ny Um @ + 3. D ginaitinka gl Vim(3) (3.6)
=0 m=0 =1 m=1

where § = y/||ly|l and ji is the spherical Bessel function of order /.

Step 4. From the Herglotz functions wl,g,(g), t7 = 1,2,---, N7 to the boundary of the obstacle
ap.
For simplicity we assume that there exists 0 < @ < b < 400 and a smooth function f(8,®) such
that a < f(8,9) < b, V8,4 and we have 9D = {(r,0,¢) | r = f(6,¢), 0<6< 7, 0< ¢<2r}.
The reconstruction of the boundary @D from the Herglotz functions is based on the relation (2.8) in
the case of the acoustically soft obstacle, or the relation (2.11) in the case of the acoustically hard
obstacle, or the relation (2.14) in the case of the obstacle characterized by an acoustic impedance.
The relation (2.8) must be interpreted as a nonlinear equation that defines implicitely f as a
function of 4 and @, the relations (2.11), (2.14), due to the presence of the @/3dn term, are nonlinear
3

expressions involving f, .—%, A

55 that is first order partial differential equations. So that we expect

that the reconstruction of @D in the acoustically soft case should be easier than in the remaining

cases. In section 4 we will show an ad hoc procedure to exploit (2.8), here we restrict our attention
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to a general procedure to obtain 9D that can be applied always. We approximate 8D with a

truncated series of spherical harmonics:

L, 1 L, {
£6,)=>" ctmUm(@) + Y Y cim2Vim(£) (3.7)
=0 m=0 (=1 m=1

where L, > 0 is chosen depending on 9D, i.e. simple obstacles can be reconstructed with small
L,, thatis L, = 4,6. Moreover if it is assumed that 3D has some of the symmetries previously
considered these symmetries can be easily translated into properties of the coefficients {¢im1, ¢im2},
that is the appropriate coefficients can be chosen zero. Let ¢ = {¢im1,¢im2}, 0SI< L,, 0<m<
be the (L, + 1) dimensional real vector of the unknown coefficients, the unknown boundary is

obtained minimizing with respect to ¢ the following functions

2 _;k.lf 2
Li(c) = —/ dd)/ sinf |wy i, + dé (3.8)
(31
when the acoustically soft obstacle is considered,
e—iki I |2
Lo = Z / qu/ sm0 w2, + ——— W7 —)| df (3.9)
i —1 n
when the acoustically hard obstacle is considered,
2 e-ikilf
Ig(g) / d(D/ Slﬂe 1+ Xa )(11)3 A T!f—' dg (310)

:,-1
when the obstacle with acoustic impedance is considered.
In (3.8), (3.9), (3.10) the Herglotz wave functions obtained in Step 3 are computed in (r =
f(8,9),8, ), 5‘%; is the norrﬁad derivative with respect to the surface r = f(8,¢) and f is ap-
proximated with (3.7). The factor k—ll— in (3.8), (3.9), (3.10) is chosen to make the addenda corre-
sponding to different values of £ of the same order of magnitude, finally the integrals appearing in
(3.8), (3.9), (3.10) are approximated by some simple quadrature rule. We observe that the functions
I:(¢), t=1,2,3 are non negative functions and that, if we neglect the effects of the approximations
introduced, the surface r = f(4.®) corresponds to a point where [;(¢) i = 1,2,3 is zero, that is
r = f(8,¢) is a global minimizer of [;(¢c). We note that in general the surface D is only a proper
subset of the set of points satisfying the relations (2.8) or (2.11) or (2.14).
When the minimization of [;(¢) does not give a satisfactory reconstruction of 8 D we minimize P;(c)
instead of [;(¢), where:

Plc)=I{c)+q(c) =123 (3.11)
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and q(¢) is a penalization term. The penalization term g(c) is chosen as follows

n na

a(e) =D > pis(f(8:05) = £53)° (3.12)

=1 j=1
where p;; > 0 are weight factors, f; are approximated values of f in the direction (6;, ;) that
we assume known. For the acoustically soft obstacles the values ff; can be obtaired solving (2.8)
with § = 8;, ¢ = @; as a nonlinear equation for f. In the remaining cases the nonlinear partial
differential equations (2.11), (2.14) become nonlinear equations when

af _9of

55 =95 =" (3.13)

For a large class of surfaces (3.13) is satisfied in some special points such as the North Pole (i.e. § =
0, ¢ arbitrary), the South Pole (i.e. § = 7, ¢ arbitrary) or the Equator (i.e. § = %, & arbitrary).
At these points (2.11), (2.14) can be solved as nonlinear equations to obtain approximate values
;7 of f to be used in the penalization term (3.12).

The minimization of I;(¢) or Pi(c) is performed with one of the following three algorithms: DB-
CONTF (17], that is a quasi Newton local minimization algorithm, SIGMA [18],{19], that is a global
minimization stochastic algorithm, or DUNLSJ [20], that is a non linear least squares algorithm.

The quasi-Newton algorithm performs only a local minimization but is computationally cheaper
than the global minimization alghorithm. The nonlinear least squares algorithm is specifically

suited for the minimization of I,(¢) ¢ = 1,2.,3.
4- The reconstruction of JD in the acoustically soft case

In section 3 we have observed that (2.8) can be interpreted as a nonlinear equation defining f

implicitely as a function of § and >. So that differentiating (2.8) with respect to # and ¢ we have:

. awlh Of awlll _ . A <
[ku 5 +(f+k~— 7 ]094- 5 =0 , 0<8<m 0<p<m (4.1)
3w1 i 1 e~k / ()f 07U1 ' .
k, 1 —_ ] = - = , <@ <, < - B
[ "5y +(f+k” 7 ]a¢+ e =0 0<f<r, 0<p<2r (4.2)

Equations (4.1), (4.2) can be interpreted as ordinary differential equations for the unknown f.
We note that, in the reconstruction procedure considered here, f is not approximated with a
truncated series in spherical harmonics as in (3.7) and that the choice of several values of &k (i.e.

ki, iy =1,2,---,.V1) does not play any role. In order to obtain f(8, ) we proceed as follows:
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(i) for fixed @ and ¢, let say § = ¢ = 0, we solve (2.8) as a nonlinear equation. Let fyo be the
solution found

(ii) given foo we solve, for 0 < ¢ < «, the differential equation obtained by taking the real part of
(4.1) with the initial condition

F(0,0) = foo (4.3)

Let f3(8,0) be the solution found. We verify that f(8,0) satisfies (2.8)
(iii) given fo(#,0) we solve, for 0 < & < 2r, the differential equation obtained by taking the real

part of (4.2) with the initial condition
£(6,0) = fo(6,0) (4.4)

Finally we verify that the f(8, ¢) obtained in this way satisfies (2.8).

The differential problems considered in (ii), (iii) are initial value problems for scalar differential
equations and are solved numerically using a Runge-Kutta-Fehlberg method (i.e. the subroutine
RKF45 [21]).

The problem considered in (iii) is performed only a finite number of times corresponding to a
discretization of the variable 8.

We note that if the obstacle is cylindrically symmetric with respect to the z axis (iii) is not necessary
and the problem 1s solved after performing (i), (ii). Moreover the differential equations of (iii) for
different values of & are independent one from the other and can be solved in parallel. The set
of solutions of (2.8) in general contains the surface f(8,¢) as a subset so that when performing
(i), (i), (iii) only trajectories that appear to define a closed surface should be considered. Finally
the solution of the inverse problem based on the differential equations (4.1), (4.2) is limited to the
acoustically soft obstacles and appears o be more sensible to error in the data than the minimization
procedure described in section 3. However its computational cost is very small compared to the

minimization procedures previously described.
5. The numerical experience

In this section we describe the numerical results obtained using the numerical methods described
in sections 3 and 4 on several test problems. When we consider the boundary condition (1.7) we

choose y = 1. The surfaces 0D considered are the following ones:
SyY e =1 Oblate Ellipsoid _ (5.1)
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a2 2 ..
* + 9y + (52)2 =1 Prolate Ellipsoid (53.2)

((gz)"" + (%3/)")5 +210 =1 Short Cylinder (5.3)
9 2 2 .
(2 +y*)° + (-3- )10 =1 Long Cylinder (5.4)
r= %(cos"’ 8 + ;: sin? )% Vogel's Peanut (5.5)
r=1- —;- cos 26 Horizontal Platelet (5.6)
r=1+ % cos 26 Vertical Peanut (5.7)
r= %(Z +2cos36)} Pseudo Apollo (5.8)
sind 2, 2 -3 .
((H(<p)) (§ cos 6)° ) Corrugated Ellipsoid (5.9)
= (204 Zeosg)) ™t Blipsoid (510
he) 3
2siné |10 P .
=((2=2 d Cylind .
r ((BH(é)) + cos 0) Corrugated Cylinder (5.11)
r= % + H(¢)sin® 6 Corrugated Platelet (5.12)
where
h(¢) = ((% cos ¢)? +sin? ¢) "% (5.13)
H($) = (Rn + Ancosd¢ + By cos 8¢ + Ch, cos 16¢)? (5.14)
and
0.3 0.05 0.01 .
Ah—mfh ; Bh'mfh ; Ch;'_mfh v Ra=1-(An+ Br+Ch) (5.15)

fn is the corrugation parameter. In our numerical experience f, = 0.2. The obstacles D corre-
sponding to (5.1), (5.2), (5.3), (3.4) are convex bodies symmetric with respect to the z-axis and
to the equator, the obstacles corresponding to (5.3), (5.6), (5.7), (5.8) are non convex but they
mantain the symmetry with respect to the z-axis. Finally the obstacles D corresponding to (5.9),
(5.10), (5.11), (5.12) in general are non convex and non symmetric with respect to the z-axis. We
observe that a characteristic length L of the obstacles can be chosen to be one. The Tables 5.1, 5.2,
5.3, 5.4 show some numerical results obtained with the methods described in the previous sections.
In the Eyz and Emaz columns of those tables we use the notation a(3) to mean a - 10°. Table 5.1
summarizes the results obtained with the obstacles (5.1), (5.2), (5.3), (5.4), Table 5.2 summarizes
the results obtained with the obstacles (5.5), (5.6), (5.7), (5.8), finally Table 5.3 summarizes the
results obtained with the obstacles (5.9), (5.10), (5.11), (5.12).
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We remark that in the reconstructions presented in Table 5.3 the obstacles are considered as general
surfaces, that is there is no use of symmetries in the reconstruction procedure. In Figs. 5.1, 5.2,...,5.9
the reconstructions denoted with (*) in the Tables 5.1, 5.2, 5.3 are shown.

Let (0:,9;) = (i55.775), t = 1.2...,35, j =0,1,...,35 and let f(9:,9,) be the exact values of the
surfaces given by (3.1), (5.2),...,(5.12) and f.(:, ®;) be the corresponding values obtained by the
reconstruction procedure of sections 3 and 4. In the Tables 3.1, 5.2, 5.3, 5.4 we use as performance
index the relative L? error, that is:

[(£(0,0) = £(0,0))* + ((7,0) = fulm, 0))? + £, £3o(1( b))~ £0:6,))

Eyx = 5

[£0,07 + f(m, 0 + £, T3, (01, ,)?

(5.16)
Table 5.1 Axially symmetric convex obstacles
Lma.x=Lg=8;Ql=A1;Q3=A2
Recon- Boundary Reconstruction| Penalization term
Object struction{conditionlL jki|k, method [North PoldEquator ¢ Er-
Oblate Ellipsoid 1 Dirichlet{ -| 3|~ RKF45 - - 0.0 |0.868(-4
” 2 " -13{- RKF45 - ~  10.05/0.703(-3
" 3(*) [Neumann|4|2lndq DBCONF no no 0.0 [0.5346(-2
" 4(*) " 4/2inqg DBCONF no no |0.05]0.880(-2
" 5 Mixed {4|2jnd DBCONF no no | 0.0 [0.365(-2
” 6 " 4{2inq DBCONF no no |0.050.589(-2)
Prolate Ellipsoidf 7 Dirichlet| -| 3| - RKF45 - - 0.0 {0.256(-4
? 8 " -13- RKF45 - - 10.05(0.966(-2)
” 9 Neumann( 4{2ind DBCONF no no 0.0 0.172(-1
" 10 " 4|2lna  DBCONF no no [0.05/0.157(-1
? 11 Mixed |4|2ind DBCONF no no 0.0 [0.432(-2
” 12 " 4{2lng DBCONF no no |0.05[0.869(-2)
Short Cylinder 13 | Dirichlet|-{3| - RKF45 - - 0.0 |0.629(-2)
" 14 ” -3 - RKF45 - - 0.050.147(-1
" 15 (Neumann|6|2jnd SIGMA no no | 0.0 10.304(-1
? 16 " 6{2nd  SIGMA yes yes | 0.05{0.626(-1
7 17(*)| Mixed {6]|2ing SIGMA yes yes | 0.0 |0.306(-1
" 18(*) " 6/2indg SIGMA yes yes 10.05]0.468(-1
Long Cylinder 19(*) | Dirichlet| -{3] - RKF45 - - 0.0 |0.302(-2
" : 20(*) ” -13- RKF45 - - 0.05]0.369(-2)
" 21 |Neumann|6|2|3 SIGMA yes yes | 0.0 [0.543(-1)
” 22 " 612|3 SIGMA yes yes [0.05(0.482(-1)
" 23 Mixed [6{2inq SIGMA yes yes | 0.0 0.415(-1
” 24 ” 6i2lng SIGMA yes yes |[0.05{0.425(-1

i
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or the relative L™ error, that is:

£, = "I0.0) = f0.01/(x.0) = felx. OL 1B 0) ~ 061, (T3} o

mes max{| /(0. 0)], | /(7. 0)}, 1/ (Brn ;)] » (ohirig N

Let us define the sets:
Ay = {(6:,0) ] 6; =i110 , i=0,1,---,10} (5.18)

As = {(6:,0;) ] 8 = z'{% =195 & =jl;r- ,7=0,1,---,8}U{0,0} U {r,0}

As = {(6:,0;) | 6; = ig- d=1,-T5 6 =j§ ,j=0,1,---,6}U{0,0}U {r,0}  (5.20)
Table 5.2 Axially symmetric non-convex obstacles
Lmaz:=Lg=8;Q1=Al;Q3=A2

Recon- [Boundary Reconstructiony Penalization term
Object structioncondition|L Jkilk, method  |[North PoleEquaton ¢ Eya
Vogel's Peanut 1(*) | Dirichlet{ 4{3jnd  SIGMA no no | 0.0 |0.128(-1)
" 2(%) " 14{3nd SIGMA no no |0.05(0.175(-1)
" 3 |Neumann| 4|2|nq SIGMA no no | 0.0 {0.596(-1)
" 4 K 4{2lna SIGMA no no [0.05|0.176(-1)
? 3 Mixed |4]2nd SIGMA no no 0.0 10.273(-1)
" 6 ” 4{2jng SIGMA no no {0.050.128(-1)
Horizontal Plateletf 7 Dirichlet| 4{3lng SIGMA no no | 0.0 {0.451(-1)
" 8 " 4|13ind  SIGMA no no [0.05| failure
” 9 |Neumann|{4|{2|nd SIGMA no no | 0.0 [0.103(+0)
" 10 " 412ind  SIGMA no no |0.05(0.202(+0
" 11(*)| Mixed |4|2na SIGMA no no | 0.0 |0.861(-1)
” 12(%) b 4{2lngd  SIGMA no no }0.05]0.156(0)
Vertical Peanut 13 | Dirichlet| 4{3jng SIGMA yes yes | 0.0 [0.172(-1)
” 14 " 413jna  SIGMA yes yes |[0.05( failure
7 15 |Neumann|4|2}3 SIGMA no no | 0.0 |0.725(-1)
” 16 " 4i2]3 SIGMA no no |0.05| failure
17 | Mixed |4[2]/3] SIGMA no no | 0.0 |0.649(-1)
7 18 7 41213 SIGMA no no |0.05| failure
Pseudo Apoilo 19 | Dirichlet| 4 an SIGMA no no 0.0 |0.602(-1)
" 20 N 1{3ind  SIGMA no no {0.05(0.114(+0)
” 21(*)|{Neumann| 4 (2|3 SIGMA yes no 0.0 [0.359(-1)
" 22(*) " 41213 SIGMA yes no |0.05(0.325(-1)
" 23 Mixed |4](2(3 SIGMA yes no | 0.0 {0.551(-1)
n 24 “ o l4f23]  sSIGMA ves no |0.05]0.321(-1)
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In our numerical experience we choose

Ql = .41 (521)
when the obstacles of Tables 5.1, 3.2 are considered or
Q; = Aj (3.22)

when the obstacles of Table 5.3 are considered. Ti1 - -et Q2 is either {2}, {3}, or {2,3} (see Tables).
Finally when the obstacles of Tables 5.1, 3.2 considered §23 is given by As and when the obstacles
of Tables 5.3 are considered 3 is given by A;. We observe that with these choices the resonance
condition (1.9) is satisfied. The far field data corresponding to these choices are obtained by solving
numerically the corresponding direct problems that is the boundary value problems (1.3), (1.4),

(1.5) or (1.3), (1.4), (1.6) or (1.3), (1.4), (1.7) using a T-matrix approach [16].

Table 5.3 Generic obstacles
Reconstruction method = "DUNLSJ”, without penalization term,
Lmaz =L;=6; L,=4 k1 =2; Oy = A3; Q3 = A3

Object [ReconstructionBoundary condition ¢ Fyr:

Corrugated Ellipsoid 1 Dirichlet 0.0 | 0.276(-1)
" 2 " 0.02]0.428(-1)

” 3(*) Neumann 0.0 {0.287(-1)

" (%) " 0.02}0417(-1)

" 5 Mixed 0.0 | 0.325(-1)

” 6 " 0.02]0.133(+0)
Ellipsoid v Dirichlet 0.0 | 0.291(-1)

" 3 7 0.02] 0.296(-1)

" B i Neumann 0.0 {0.303(-1)

" 10 | " 0.02]0.308(-1)

" 11 i Mixed 0.0 {0.152(40)

” 12 | " 0.02{0.245(-1)
Corrugated Cylinden 13 Dirichlet 0.0 [ 0.5334(-1)
" 14 " 0.02{0.652(-1)

” 15 Neumann 0.0 | 0.502(-1)

N 16 N 0.02{0.118(+0)

" 17(*) Mixed 0.0 | 0.569(-1)

" 18(*) " 0.02]0.673(-1)
Corrugated Platelet 19*) Dirichlet 0.0 | 0.663(-1)
" 20(*) " 0.0210.129(+0)

” 21 Neur-ann 0.0 [0.105(+0)

" 22 ” 0.02| failure

" 23 Mixed 0.0 | 0.651(-1)

” 24 " 0.021]0.175(+0)
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Table 5.4 Performance as a function of ¢
Object: Long Cylinder; Boundary condition: Dirichlet;
LmaI=Lg=8; Lp=6;k1=3; Q1=A1 Q3=A3

Reconstruction method= "SIGMA” without penalization term.

Reconstructio €l FEnaz Epz
1 0.0] 0.611(-1) | 0.286(-1)
2 0.05 0.614(-1) | 0.294(-1)
3 0.1 0.387(-1) | 0.298(-1)
4 0.200 0.525(-1) | 0.398(-1)
5 0.30 0.865(-1) | 0.548(-1)
6 0.400 0.109(+0) | 0.655(-1)
7 0.50 0.123(+0) 0.714(-1)
8 0.60 0.131(+0) | 0.752(-1)

To the data [, ; = Fo(g"j, ki,, ;) is added a random error term, that is F};, ; is substituted with

Fri = Fiig+ €| Figl (5.23)

VL]

where € > 0 is a parameter and ( is a random number uniformly distributed in [~1, 1].

In our numerical experience we have L,z = L, = 6 or 8, L, = 4 or 6 (see Tables). Finally in
Table 5.4 we show the performance of our algorithms for increasing values of € in the case of the
acoustically soft long cylinder. The method based on the global minimization algorithm SIGMA
appears to be the most powerful one at the price of higher computational cost. The computations

previously described have been performed on a VAX 6310 with VMS Operating System.
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RECONSTRUCTION 19
of table 5.1

of table 5.1
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Fig. 5.1 Long Cylinder

RECONSTRUCTION 3 RECONSTRUCTION 4
of table 5.1 of table 5.1

Fig. 5.2 Oblate Ellipsoid

RECONSTRUCTION 17 RECONSTRUCTION 18
of table 5.1

of table 5.1

Fig. 5.3 Short Cylinder
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RECONSTRUCTION 1
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of table 5.2

of table 5.2

s Peanut

?

Fig. 5.4 Vogel

RECONSTRUCTION 22

RECONSTRUCTION 21

ORIGINAL

of table 5.2

of table 5.2

Fig. 5.5 Pseudo Apollo
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of table 5.2
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Fig. 5.6 Horizontal Platelet

36




RECONSTRUCTION 20

RECONSTRUCTION 19

ORIGINAL

of table 5.3

of table 5.3
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Fig. 5.7
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of table 5.3

of table 5.3

Fig. 5.8 Corrugated Ellipsoid
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Fig. 5.9 Corrugated Cylinder
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Abstract

A numerical method for the three dimensional inverse acoustic and electromagnetic
time harmonic scattering problem is presented. The far field patterns of the Helmholtz
or vector Helmholtz equations generated by a known wave incident on an obstacle D are
measured. These measurements are repeated for several incoming waves. From these
measurements the boundary dD of the obstacle is reconstructed. The reconstruction
procedure proposed here generalizes the "Herglotz function method” introduced by
Coiton and Monk (1] in the acoustic problem and is effective in the so called resonance
region.

1. INTRODUCTION

Let R3 be the three dimensional euclidean space, z = (z,y,2z) € R?® be a generic
vector, (.,.) will denote the euclidean scalar product and ||.|] the euclidean norm. Let
D c R? be a bounded simply connected domain with smooth boundary 3D that
contains the origin. Let u'(z) be an incoming acoustic plane wave, that is:

u'(z) = e'klz.2) (1.1)

where & > 0 is the wave number and a € R? is a fixed unit vector. Let us denote with
u’(z) the acoustic field scattered by the obstacle D and with u{z) the total acoustic
field, that is:

f The research reported in this paper has bean made possible through the suppott and sponsorship of the italian
Government through the Ministero per I'Universitia e per la Ricerca Scientifica under contract MURST 40%
1990 and of the U. S. Government through the Air Force Office of Scientific Research under contract n.
AFOSR 90-0228
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u(z) = u'(z) +u'(z) (1.2)
The total acoustic field n(z) satisfies the Helmholtz equation:
Ou+k*u=0 in RN\D (1.3)

and the scattered acoustic field u*(z) satisfies the Sommerfeld radiation condition at
infinity, that is:

tzl( 2

im -
llzif—no ollzi}

—thu’} =0 (1.4)

where A = ;—:, + aa—;; + ;—: is the Laplace operator. Moreover the total acoustic feld
u(z) satisfies a boundary condition on 8D. This boundary condition can be formulated
in several different ways, depending on the nature of the obstacle D.

In [2],[3],{4] we have considered the acoustically soft obstacles that are characterized by
the Dirichlet boundary condition:

u=0 on 9D (1.8)

In [4],{5] we have considered the acoustically hard obstacles characterized by the
Neumann boundary condition

% _9 on D (1.6)
dv

where v is the unit normal on 3D, and the obstacles characterized by an acoustic
impedance that satisfy the mixed boundary condition

u+xgs=0 on 0D (1.7)

We assume that y is a given constant. We consider three boundary value problems: the
Dirchlet boundary value problem given by (1.3),(1.4),(1.5), the Neumann boundary
value problem gi ren by (1.3), (1.4),(1.6) and the mixed boundary value problem given
by (1.3), (1.4),(1.7). In [6] it is shown that the scattered field u*(z) of the Dirich!zt, the
Neumann and mixed boundary value problem has the following expansion

ikl 1 ,
uwl(z) =~ —Fo(d,k,a)+ O(w) when [[zi| — oo (1.8)
; Hx

I

where £ = ﬁ-:-ﬁ , £ #0and F,(Z, k. a) is the far field pattern generated by the incoming

wave (1.1) that hits the obstacle D.
In {2],(3},[4],{5] we have introduced a numerical method for an inverse problem for the
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three dimensional Heimholtz equation, that is from the knowledge of the nature of the
obstacle i.e. the boundary condition on @D satisfied by u(z) and from the far fields F,
generated by several incoming waves we want to recover the shape of the obstacle 8D.
To be more precise let A\, , n = 1,2, ... be the eigenvalues of the Laplace operator in
the interior of D, with Dirichlet boundary condition (1.5) or with Neumann boundary
condition (1.6) or with the mixed boundary condition (1.7); let B = {z € R?| ||z]| < 1},
and dB be the boundary of B. We will consider the following inverse problem:
Problem 1.1 [nverse acoustic probl-m. Let us assume that u(z) satisfies the Dirichlet
boundary condition (1.53) or the Neumann boundary condition (1.6} or the mixed
boundary condition (1.7). Let 2; €88 , 2; C {£ € R | & > 0} be two given sets
such that A, € ; ¢ = 1,2... From the knowiedge of F,{Z,k,a), fora s 1, , —k? € Q,
determine the boundary of the obstacle dD.

We note that the condition A, € 2, : = 1,2... is a non-resonance condition, that 0, is
the set of tiie directions of the incoming waves and that the far fleid F, is observed for
Z € OB. Let us now consider the electromagnetic problem. For time harmonic waves
the Maxwell equations are reduced to the time harmonic Maxwell equations [6] (see
chapter 4).

In the following we wiil use occasionally complex vectors abusing of the notations.

Let E'(z) be the electric feld associated to a linearly polarized time harmonic incoming
wave propagating in an homogeneous isotropic medium, that is:

Ei(z) = we'Hzd (1.9)

where w,a € R? with {|a|| = | are given and & > 0 is the wave number, moreover we
assume that:

divE'(z) = ik(w,a)e* =2 =0 (1.10)

1 — 1 ) ] ; t — aE;( ) aE"(_x_) aE: )
where E'(z) = (Ei(z), E}(z), Ei(z)) and divE'(z) = 2518 + =28 4 S5 We
note that w is the polarization vector and g is the propagation direction of the incomig
electric field. We note that the magnetic field H'(z) associated to this incoming wave
is given by:

H(z) = iikcurlﬁ'(z) (1.11)

. 9E( IE (1) FEL 2EL(z) FE (z)  IEL(z
where curlE (£)=< 07:) - s a:_i) - agz)'faLz_ - ._872) .

Let us denote with E*{z) the electnic field scattered by the obstacle D when hitted by
the incoming wave E'(z) and with

E(z) = E'(z) + £°(z) (1.12)

the total electric field. It is »asy o see (6] (see chapter 4) that the time harmonic Maxwell
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equations in an homogeneous isotropic medium that does not contain electric charge
reduce to the vector Helmholtz equation, so that the scattered field £°(z) satisfies:
AE(z)+k*E’(z)=0 inR’\D (1.13)
together with the equation:

divE*(z)=0 inR\D (1.14)
while the Silver-Miiiler radiation condition at infinity [6] (see paragraph 4.2) reduces to:

curlE’(z) x £ - ikE{z) =0 (—i—) , lizl] = o0 (1.15)

{E]

where x is the vector product. Let v{z) be the exteror unit normal to 3D, for a
perfectly conducting obstacle D, we will assume the following boundary condition:

E(z)xuy(z)=0, z€dD (1.16)

In 6] it is shown that E'(z), solution of the boundary value problem (1.13), (1.14),
(1.15), (1.16) has the following expansion:

Ez) = Tz E.o(i.k,g,g)+0<ml”3) , lzll = o0 (1.17)

where Eq(Z,k,a,w) is the (electric) far field pattern generated by the incoming wave
(1.9) that hits the obstacle D. '

In {7] we introduce a numerical method for an inverse problem for the three dimensional
vector Helmholtz equation (1.13). That is, from the knowledge of the nature of the
obstacle (i.e. the fact that the obstacle is perfectly conducting) and from the (electric)
far fields Eq(Z,k,a,w,) generated by several (known) incoming waves we want to
recover the shape of the obstacle dD.

To be more precise let 3. n=1.2... be the eigenvalues of the "vector” Laplace
operator restricted to the divergence free vector fields with the homogeneous boundary
condition (1.16) in the interior of D. In [7] we have considered the following inverse
problem:

Problem 1.2 Inverse electromagnetic problem. Let 0, C8B, t CRY, 3 CR be
three given sets such that \, £ ;3 1=1,2,... and let Eo(i,k,g,gg) be the (electric)
far field defined in (1.17). From the knowledge of Eo(Z, k a,w,) for a € ), w, € Qa,
—k2 € 1, determine the boundary of the obstacle 8D. B -

We note that the condition i, £ 23 1 = 1,2,... is a non resonance condition, that {; is

the set of the directions of *4e incoming waves and that {2 is the set of the polarization
vectors of the incomig waves.
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The inverse Problems 1.1, 1.2 have been studied generalizing the "Herglotz function
method” introduced by C. :on and Monk [1]. This technique is supposed to be
particularly effective in the resonance region, that is, when

kL~1 " (1.18)

where L is a characteristic length of the obstacle D.

In section 2 we develop the mathematical relations needed to develop our procedure and
we outline the numerical method derived from them. Finally in section 3 we present
some numerical results.

2. THE MATHEMATICAL FORMULATION OF THE INVERSE
PROBLEM

We will restrict our attention here to the inverse Problem 1.1 associated to the
Dirichlet boundary value problem (1.3),(1.4),(1.5). The remaining inverse problems are
treated in a similar way and we refer to {3},[4],[5],{7].

Forz,y € R’ let

&(kllz - yll) = (2.1)

iz - yll

be the Green's function of the Helmholtz operator with the Sommerfeld radiation
condition at infinity. It is easy to see that:

ik[l_

B(kllz = yl) = S——e " ED 4 O(r—

Tzl ”2 when jlz|| — oo (2.2)

izl

moreover from the Helmholtz formula [6] we have:

a® 3"(./) _ [ -uz) ifzeD
[z g ={ 0 { 28R 23)
where doy(y) is the surface measure on 9D.
Substituting (2.2) in (2.3) and using (1.8) we have:
X 1 ac-.k(é.y) au(y) _'k(z »
Rz k) = o2 [ () == - e 0y (2.4)

Let g(z) € L¥(8B,do;) where L?(3B,da;) is the space of square integrable functions
with respect to the surface measure on the unit sphere do; and g(Z) is the complex
conjugate of g(zZ).

For every g(z) € L?(3B.do;) from (2.4) interchanging the integrals we have:
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/ FolZ, k a)p\i)dor(2) = — [ doa(Z)g\Z)
aB 47 JaB

/ ge=t 20 Qu(y)
30D

-.ug.g))dm‘{y) —

(u(y) ) Ty 2.5}
_ du(ky) au(j)
e BD(“(_U_)W 3oy )U\’VJ )dal(’J)
where
") = /a,, g(2)e*E L day(2) (2.6)

It is easy to see that v(ky) satisfics the Helmholtz equation for y € R}, moreover v(ky)
is the Herglotz wave function corresponding to the Herglotz kernel g(Z). Since the total
acoustic field u satisfies the boundary condition (1.3) on the surface 3D formula (2.3)
reduces to:

—_— l
Fo irkyg. ida'll.‘.i. =
28 ( 9(2)doa(2) T4 Jap 3“(!/)

v(ky)doi(y) (2.7

We restrict our attention to the Dirichlet Herglotz domains, that is domains such that
the unique solution v of:

(A+kYWw=0 z€D (2.8)

e —vkllzll oD o
v= —mr zE ("9)

is given by (2.6) for a suitable choice gy(Z, k) of g(Z)

We note that in the definition of Herglotz domains we have exploited the hypothesis
-k # A, 1 =1,2,---. A simple computation shows that the sphere with center the
origin is an Herglotz domain that is the class of the Herglotz domains is not emnty. In
(2.7), let v be the Herglotz wave function associated to gy(Z, k), using (2.9) and the
Helmholtz formula (2.3) we have:

Fy(2, k, )g11(E, Fdr2(2) = = (2.10)
an k

when g/(Z, k) is the Herglotz kernel, formula (2.10) holds Yk, a. Problem 1.1 proposed
in section 1 will be soived in three steps:
(i) from the knowledge of some far ficlds F, using (2.10) determine the Herglotz kernel
gu(Z, k) of the domain D
{1) from gu(Z,k) using (2.6) find the corresponding Herglotz wave function v
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(ii1) determine 8D using (2.9)

The steps (i),(i1),(iit) are performed with a fixed &, however when necessary several {two
or three) values of &k can be used [4],[3].

The numerical method that exploits the previously described reconstruction procedure
consists of some linear algebra computations to perform step (i), expiicit analyrtic
computation to perform step (ii), a global minimization procedure to perform step
(ii1). The global minimization algorithm used is based on the numerical integration of
a system of stochastic differential equations {9],{10]. Further details are contained in

(21.(31,(4).(31,{7].
3. NUMERICAL RESULTS

The surfaces D considered are the following ones:

1- Oblate Ellipsoid (32 + 3y +t=1 (3.1)
2- Prolate Ellipsoid f+yt+ (3 =1 (3.2)
3- Vogel's Peanut r = 3(cos?§ + 1 sin? §)}/2 (3.3)
4- Short Cylinder Rz +(3y)?) +2%=1 (3.4)
5- Pseudo Apollo r= 34 +2cos 38)}/2 (3.3)

All these surfaces are cylindrically symmetric with respect to the z-axis and the surfaces
1,2,3,4 are also symmetric with respect to the equator.

We observe that the obstacles D corresponding to 1,24 are convex and the ones
corresponding to 3,5 are not convex. Finally a characteristic length L of the obstacles
can be chosen equal 1.

Let (r,8,4) be polar cohordinates and £ = (sinfcos ¢,sinfsing,cos8), D = {r =
f(6,)10<80<x,0<d<2r}forj=0,1,...,36let §; = %, f(6,,0) be the exact
values of the surfaces given by (3.1),...,(3.5) and f.(#;,0) be the values reconstructed
performing the numerical procedure described in section 2. The relative L? error in the
points {(8;,0) | j =0,1,...,36}, that is :

36 3

Zo(f(gno) = fe(6;,0))
)=

Epr= 5 (3.6)
Zﬂf’(”no)
=

is used as a performance index.

In the results shown below we use 9-11 different directions for the incoming waves and
in the case of the electromagnetic problem two linearly independent polarizations for
each incoming direction. The far fields are obtained from the numerical solution of
the corresponding boundary value problems. That is, for example, for the acoustic
Dirichlet inverse problem the boundary value problem (1.3),(1.4),(1.5). A random error
of order 1%-3% is added :o the numerically computed far fields in order to simulate
actual measurements. The far fields are supposed to be known on the full solid angle
(complete data) or only on a finite set {3-11) directions (incomplete data).
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The resuits obtained with our reconstruction procedure are -* “wn in tables 3.1, 3.2,
3.3, 3.4.
Table 3.1
Acoustic Dirichlet inverse problem
Object [ k I, womer ot TComwie]
Oblate Ellipsoid] 3 f 9 | no 10.0071
‘Proiate Ellipsoid 3 ; 9 i no |0.031
Vogel’s Peanut | 3 | 9 yes |0.019
Short Cylinder | 3 | 9 no [0.0091
Pseudo Apoilo | 4 ! 9 yes |0.062

Table 3.2
Acoustic Neumann inverse problem

ObjCCt k ‘inciumr?nbgerw:{les CO;“‘K:':'-C EL’
Oblate Ellipsoid| 3 9 no {0.0079
Prolate Ellipsoid 3 9 no [0.0139

Vogel's Peanut | 3 | 9 no (0.0462
Short Cylinder | 2 9 yves 10.0474
Pseudo Apollo {2-3 9 i ves [0.0353
Table 3.3
Acoustic Mixed inverse problem (x = 1)

Object K lincoming waves| ~duea | EL?
Oblate Ellipsoid| 4 9 yes (0.0023
Prolate Ellipsoid 4 9 yes {0.017

Vogel's Peanut | 3 9 no 10.027
Short Cylinder | 3 9 yes (0.014
Pseudo Apollo |2-3] 9 yes |0.036
Table 3.4
Electromagnetic inverse problem i

Object k inc“;‘rln?nb;rwoatres (40:;:;:‘:“ EL:
Oblate Ellipsoid| 3 18 yes |0.0304
Prolate Ellipsoid 3 18 yes 0.0323

Vogel's Peanut | 3 18 yes |[0.0264
Short Cylinder ' 2.5 22 yes [0.0521]
Pseudo Apollo @ 4 | 22 yes 0.0411

As an example in the figures 1 and 2 the quality of our reconstructions is shown.
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Pseudo Apollo Reconstruction of Table 3.4
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